148 research outputs found

    Self-Paced Learning: an Implicit Regularization Perspective

    Full text link
    Self-paced learning (SPL) mimics the cognitive mechanism of humans and animals that gradually learns from easy to hard samples. One key issue in SPL is to obtain better weighting strategy that is determined by minimizer function. Existing methods usually pursue this by artificially designing the explicit form of SPL regularizer. In this paper, we focus on the minimizer function, and study a group of new regularizer, named self-paced implicit regularizer that is deduced from robust loss function. Based on the convex conjugacy theory, the minimizer function for self-paced implicit regularizer can be directly learned from the latent loss function, while the analytic form of the regularizer can be even known. A general framework (named SPL-IR) for SPL is developed accordingly. We demonstrate that the learning procedure of SPL-IR is associated with latent robust loss functions, thus can provide some theoretical inspirations for its working mechanism. We further analyze the relation between SPL-IR and half-quadratic optimization. Finally, we implement SPL-IR to both supervised and unsupervised tasks, and experimental results corroborate our ideas and demonstrate the correctness and effectiveness of implicit regularizers.Comment: 12 pages, 3 figure

    UCF: Uncovering Common Features for Generalizable Deepfake Detection

    Full text link
    Deepfake detection remains a challenging task due to the difficulty of generalizing to new types of forgeries. This problem primarily stems from the overfitting of existing detection methods to forgery-irrelevant features and method-specific patterns. The latter has been rarely studied and not well addressed by previous works. This paper presents a novel approach to address the two types of overfitting issues by uncovering common forgery features. Specifically, we first propose a disentanglement framework that decomposes image information into three distinct components: forgery-irrelevant, method-specific forgery, and common forgery features. To ensure the decoupling of method-specific and common forgery features, a multi-task learning strategy is employed, including a multi-class classification that predicts the category of the forgery method and a binary classification that distinguishes the real from the fake. Additionally, a conditional decoder is designed to utilize forgery features as a condition along with forgery-irrelevant features to generate reconstructed images. Furthermore, a contrastive regularization technique is proposed to encourage the disentanglement of the common and specific forgery features. Ultimately, we only utilize the common forgery features for the purpose of generalizable deepfake detection. Extensive evaluations demonstrate that our framework can perform superior generalization than current state-of-the-art methods

    Adversarial Rademacher Complexity of Deep Neural Networks

    Full text link
    Deep neural networks are vulnerable to adversarial attacks. Ideally, a robust model shall perform well on both the perturbed training data and the unseen perturbed test data. It is found empirically that fitting perturbed training data is not hard, but generalizing to perturbed test data is quite difficult. To better understand adversarial generalization, it is of great interest to study the adversarial Rademacher complexity (ARC) of deep neural networks. However, how to bound ARC in multi-layers cases is largely unclear due to the difficulty of analyzing adversarial loss in the definition of ARC. There have been two types of attempts of ARC. One is to provide the upper bound of ARC in linear and one-hidden layer cases. However, these approaches seem hard to extend to multi-layer cases. Another is to modify the adversarial loss and provide upper bounds of Rademacher complexity on such surrogate loss in multi-layer cases. However, such variants of Rademacher complexity are not guaranteed to be bounds for meaningful robust generalization gaps (RGG). In this paper, we provide a solution to this unsolved problem. Specifically, we provide the first bound of adversarial Rademacher complexity of deep neural networks. Our approach is based on covering numbers. We provide a method to handle the robustify function classes of DNNs such that we can calculate the covering numbers. Finally, we provide experiments to study the empirical implication of our bounds and provide an analysis of poor adversarial generalization

    Sampling-based Fast Gradient Rescaling Method for Highly Transferable Adversarial Attacks

    Full text link
    Deep neural networks are known to be vulnerable to adversarial examples crafted by adding human-imperceptible perturbations to the benign input. After achieving nearly 100% attack success rates in white-box setting, more focus is shifted to black-box attacks, of which the transferability of adversarial examples has gained significant attention. In either case, the common gradient-based methods generally use the sign function to generate perturbations on the gradient update, that offers a roughly correct direction and has gained great success. But little work pays attention to its possible limitation. In this work, we observe that the deviation between the original gradient and the generated noise may lead to inaccurate gradient update estimation and suboptimal solutions for adversarial transferability. To this end, we propose a Sampling-based Fast Gradient Rescaling Method (S-FGRM). Specifically, we use data rescaling to substitute the sign function without extra computational cost. We further propose a Depth First Sampling method to eliminate the fluctuation of rescaling and stabilize the gradient update. Our method could be used in any gradient-based attacks and is extensible to be integrated with various input transformation or ensemble methods to further improve the adversarial transferability. Extensive experiments on the standard ImageNet dataset show that our method could significantly boost the transferability of gradient-based attacks and outperform the state-of-the-art baselines.Comment: 10 pages, 6 figures, 7 tables. arXiv admin note: substantial text overlap with arXiv:2204.0288

    Enhancing Fine-Tuning Based Backdoor Defense with Sharpness-Aware Minimization

    Full text link
    Backdoor defense, which aims to detect or mitigate the effect of malicious triggers introduced by attackers, is becoming increasingly critical for machine learning security and integrity. Fine-tuning based on benign data is a natural defense to erase the backdoor effect in a backdoored model. However, recent studies show that, given limited benign data, vanilla fine-tuning has poor defense performance. In this work, we provide a deep study of fine-tuning the backdoored model from the neuron perspective and find that backdoorrelated neurons fail to escape the local minimum in the fine-tuning process. Inspired by observing that the backdoorrelated neurons often have larger norms, we propose FTSAM, a novel backdoor defense paradigm that aims to shrink the norms of backdoor-related neurons by incorporating sharpness-aware minimization with fine-tuning. We demonstrate the effectiveness of our method on several benchmark datasets and network architectures, where it achieves state-of-the-art defense performance. Overall, our work provides a promising avenue for improving the robustness of machine learning models against backdoor attacks

    Comparison of long-term radial artery occlusion following trans-radial coronary intervention using 6-french versus 7-french sheaths

    Get PDF
    Background: The aim of this study was to explore the impact of 6-Fr and 7-Fr sheaths on the incidenceof long-term radial artery occlusion (RAO) after trans-radial coronary intervention (TRI).Methods: From September 2013 to January 2016, patients with ischemic heart disease includingacute myocardial infarction and true bifurcation lesions were randomly assigned to 6-Fr group and7-Fr group immediately after coronary angiography in a 1:1 ratio. The radial artery diameters wereobserved by ultrasound examination one day prior to TRI as well as at 30 days and 1 year after TRI.The primary endpoint was the incidence of RAO at 1-year after TRI. The secondary endpoints were theincidence of local vascular complications during hospitalization and changes of radial artery diameterswithin 1-year after TRI between the two groups. Additionally, multivariate logistic regression analysiswas used to explore potential factors related to the incidence of long-term RAO after TRI.Results: A total of 214 patients were enrolled and randomly assigned to 6-Fr group (n = 105) or7-Fr group (n = 109). There was no significant difference in the incidence of RAO at 1-year after TRI(8.57% vs. 12.84%, p = 0.313). Moreover, no significant difference was observed in the incidence of localvascular complications during hospitalization (20% vs. 24.77%, p = 0.403). After 1-year follow-up,no significant difference was found in radial artery diameters (2.63 Ā± 0.31 mm vs. 2.64 Ā± 0.27 mm,p = 0.802). Multivariate logistic analysis revealed that repeated TRI was an independent risk factor oflong-term RAO 1 year after TRI (OR = 10.316, 95% CI 2.928ā€“36.351, p = 0.001).Conclusions: Compared to 6-Fr sheath, 7-Fr sheath did not increase short-term or long-term incidenceof RAO after TRI

    PPARs and the Cardiovascular System

    Full text link
    Abstract Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone-receptor superfamily. Originally cloned in 1990, PPARs were found to be mediators of pharmacologic agents that induce hepatocyte peroxisome proliferation. PPARs also are expressed in cells of the cardiovascular system. PPARĪ³ appears to be highly expressed during atherosclerotic lesion formation, suggesting that increased PPARĪ³ expression may be a vascular compensatory response. Also, ligand-activated PPARĪ³ decreases the inflammatory response in cardiovascular cells, particularly in endothelial cells. PPARĪ±, similar to PPARĪ³, also has pleiotropic effects in the cardiovascular system, including antiinflammatory and antiatherosclerotic properties. PPARĪ± activation inhibits vascular smooth muscle proinflammatory responses, attenuating the development of atherosclerosis. However, PPARĪ“ overexpression may lead to elevated macrophage inflammation and atherosclerosis. Conversely, PPARĪ“ ligands are shown to attenuate the pathogenesis of atherosclerosis by improving endothelial cell proliferation and survival while decreasing endothelial cell inflammation and vascular smooth muscle cell proliferation. Furthermore, the administration of PPAR ligands in the form of TZDs and fibrates has been disappointing in terms of markedly reducing cardiovascular events in the clinical setting. Therefore, a better understanding of PPAR-dependent and -independent signaling will provide the foundation for future research on the role of PPARs in human cardiovascular biology. Antioxid. Redox Signal. 11, 1415-1452.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78115/1/ars.2008.2280.pd
    • ā€¦
    corecore